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* ABSTRACT
K’
ﬁ The proposed method for testing and evaluating data generated by instru-
3 ;
S
] 3 mented impact testings of notch bend specimens is evaluated by the experimental
.
F « and numerical dynamic fracture results obtained in the past. As expected, !

brittle fracture of the photoelastic, steel and aluminum impacted notch speci-
mens considered in this paper cannot be predicted by the static stress intensity
factors at the instant of crack propagation. The fracture energy was only a
fraction of the total absorbed energy and was equally unsuitable for dynamic
fracture characterization of these specimens. This critical evaluation of the
proposed method suggests that despite the enormous correlation studies which
justify the use of static analysis, neither the proposed method nor the result-
ant static stress intensity factor should be used to evaluate the fracture

data of impacted notch bend specimens of slightly different configurations.
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NOMENCLATURE
a crack length
B specimen thickness
co longitudinal bar stress wave velocity
J CLL specimen load-line compliance
R E modulus of elasticity
N K1 mode I stress intensity factor
N
; KIdyn mode I dynamic stress intensity factor L
f KIStat mode I static stress intensity factor i
_; Kld mode I dynamic initiation fracture toughness i
] 3 P applied tup load 3
i ; S support span of beam
! ? tf time to fracture from impact initiation :
f U energy
Vy tup velocity at impact
' W beam depth )
-~ N load line displacement
- : normal stress
INTRODUCT ION :

For over a decade, a variety of instrumented impact testings of notch bend !
specimens have been used to characterize the fracture resistance of brittle as
well as ductile materials. Test specimens for such dynamic fracture testing :

range from the large notch bend specimens of 38x30x228 cm [1]* to the standard

*Numbers in brackets refer to References at the end of this paper.
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Charpy V-notched precracked specimens of 10x10x55 mm [2,3] with test materials
ranging from structural steel, to aluminum, titanium, polymers, carbon-epoxy
composites and ceramics. The results are normally presented in terms of total
absorbed energy (Charpy fracture energy), fracture energy, and dynamic initia-
tion fracture toughness, KId’ all of which are to characterize the material
resistance to dynamic loading. Unfortunately, the last two quantities are not
directly measurable and the all-inclusive total absorbed energy includes the
parasitic kinetic energy for propelling the fractured specimen. As a result,
literature is abundant with procedures for interpreting the test results, most
of which have involved correlation studies of static analyses of dynamic frac-
ture data of impacted notch bend specimens. While these data have been pre-
sented in terms of total absorbed energy, i.e., Charpy fracture energy, in the
past, the recent trend is to present the test results in terms of dynamic frac-

The K data and the restrictive conditions under which

ture toughness, KId' 1d

the data are valid are summarized among others in References [4] and [5]. These
empirical procedures are all based on static fracture analysis with restrictive
test conditions and data interpretation procedures which assure that the effects
of "inertia loading" are excluded. This a priori data filtering excludes the
high strain rate loading condition and thus reduces the impact testing to a
quasi-static tesfing condition which in part defeats the original purpose of
the test. Despite this uncertainty in its physical characterization, the im-
pacted notch bend specimen is a very popular test specimen because of the simple
test procedure involved and its compact specimen size.

With the ?ecent developments in numerical and experimental procedures for
analyzing the dynamic responses of cracked structures, some results of numerical
[6,7] and experimental [8] dynamic analyses of impacted notch bend specimens are

becoming available. One common conclusion which emerges from these dynamic
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analyses involving various specimen geometries and materials is that the com~

monly used static analysis of impact data can lead to erroneous KI values.

d
The authors have also studied dynamic fracture responses of various impacted
notch bend specimens over the past several years [9-12] but did not present
these results in terms of the recently proposed method for impact testings of
notch bend specimens [5]. The purpose of this paper, thus, is to review these
past results in view of recent attempts [13] to relate the results of impacted
notch bend specimen to parameters related to dynamic fracture mechanics and in
particular, to the dynamic initiation fracture toughness, KId'
STATIC ANALYSIS OF IMPACTED NOTCH BEND SPECIMEN

Since elastodynamic analysis of an impacted notch bend specimen can, at
best, be obtained only by executing large scale finite differences or finite
element codes, data evaluation procedures which have evolved to date are based
on static analysis of this transient phenomenon. Among the several but similar
procedures in use [2~5], the procedure as reported in Reference [5] is briefly
described in the following.

The foremost criterion for guaranteeing that specimen inertia oscillation,
which refers to the beam vibration of the specimen and which accounts for only
part of the dynamic effects, has subsided is the 31 requirement, where 7 is

related to the period of the apparent oscillations and can be predicted by [13]

|}
T = 1.68 (SWEBC, ) /2/c0 ¢}
The specimen compliance, CLL’ in equation (1) can be derived from the known
specimen deflection in the notch bend beam as [14]
s I8 W, [a
Clo=p = lP}no crack E +63 V?[w}:l (2)

is the compliance of the uncracked beam and Vy{E], which is

)
where {—(5 W

\P!no crack

the correction factor due to presence of a crack, is represented in a polynomial

of % in Reference [14].
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By adjusting the impact velocity of the tup as well as the specimen geom-
etry, ring down of the impacted specimen is believed to occur when the time to
fracture, tf > 31. The dynamic stress intensity can then be computed by using
the following static formula [15] of

S a
17 f[ﬁ] (3)

where Pm is the maximum static tup load, and f[%], which is a geometric parameter
which corrects for the finite geometry of the beam, is represented by a polynom-
ial % in Reference [15].

In addition, complete fracture of the specimen is guaranteed by a conserva-
tive requirement that the total available energy at impact, U,, is larger than
three times the energy dissipated at maximum load, or 3Um. This requirement
also ensures that the tup velocity is not reduced during the fracture initia-
tion event more than 20 percent of its initial impact velocity. In additiom,

a loading rate in terma of the static stress intensity factor rate of kI 2

50 - 500 GPa/m/s is computed by the simple formula of:

1= K/te (4.
Although the above static analysis is elastic, impacted notch bend speci-

K

mens are used to characterize also the fracture resistance of ductile materials,
such as A533B steel and low carbon steel. Thus the influence of dynamic plas-
ticity cannot be ignored in practice. Although some attempts have been made to
use J for reducing data in the presence of plastic yielding [3,13], such recom-
mended procedures are yet to be established, due to the lack of a definitive
static ductile fracture criterion and, needless to mention, a dynamic ductile
fracture initiation criterion at this time.
IMPACTED NOTCH BEND PHOTOELECTRIC SPECIMENS

The dynamic stress intensity factors obtained previously, either experimen-

tally by the use of dynamic photoelasticity or by dynamic finite element analysis
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of impacted, notch bend photoelastic specimens [10,11], are used to assess the

. e e,

validity of the recommended procedures for dynamic fracture-toughness testing.
The two photoelastic specimens of Homalite-100 and polycarbonate used in this

g comparison are shown in Figure 1. The Homalite-100 and polycarbonate specimens

model brittle and somewhat ductile materials, respectively. All cracks were
fatigued precracked in these specimens. The specimen geometries which were
primarily designed to satisfy the photoelastic requirements are admittedly ;
longer and thinner than the commonly used metallic specimens. Nevertheless, :
the two-dimensional elastodynamic responses of the photoelastic specimens, with
proper care, can be scaled to metallic specimens of smaller dimensions [16,17],
and thus these dynamic photoelasticity results were used to dramatize the ef-
fectiveness of the recommended procedures. Also shown in Figure 1 is the in-
strumented tup from which the impact load was obtained.

Figure 2 shows typical tup load traces for the Homalite-100 and polycar-
bonate specimens. These load traces do not exhibit the oscillating but increas- 1
ing load responses with time, such as those shown in References [4] and [8], ﬂ
but follow those shown in Reference[S]. These differences could be in part

attributed to the higher tup velocities at impact, V;, used in these series of

tests, as shown in Table 1.

Figures 3 and 4 show the static and dynamic stress intensity factors, KIStat

and Kldyn’ up to crack propagation in typical Homalite-100 and polycarbonate
specimens, respectively. The static stress intensity factor was computed by
substituting the measured instantaneous tup load in equation 3. The dynamic
stress Intensity factors were either obtained directly by fitting the singular
near-field state of stress to the transient isochromatics surrounding the sta-
tionary crack tip, or by using a calibrated crack opening displacement obtained

from dynamic finite element analysis. Details of the experimental and numerical
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procedure used are found in References [15] and [16].
Crack propagation initiated from the fatigued crack tip in four Homalite-

100 impacted notch bend specimens within t_ = 190 microseconds after initiation

f
of impact, as shown in Figure 3. Equations (1) and (2) yielded a calculated

T * 740 microseconds with a tf/T = 0.26 which violates the 3t impact duration
set forth in the recommended procedure. Also notable is the six-fold differ-

ences in calculated K stat

I and the actual KIdyn at crack propagation in Fig-

ure 3.

For the seven polycarbonate specimens, the time to fracture is tf < 1000

microseconds, as shown in Figure 4. The calculated 7 = 980 microseconds yields

a tf/r % 1 and is one-third of the specified 3t limitation. The large differ-

ences between the statically computed KIStat and the actual dynamic KIdyn are

also noted. These differences are in contrast with the reasonable agreements

in the Charpy data in the lt region shown in Reference [5].
Although the cracks propagated much earlier than the 3t hold time, the
tup load traces for the impacted polycarbonate notch bend specimen in Figure 2
show that the tup load continues to oscillate without abatement after te through
the duration approaching the 31 limit. These oscillations are similar to those
shown in Reference [8], and thus suggest that KIdyn would not converge to KIStat
even if initiation of crack propagation was restrained beyond the suggested 3t
limit by lowering the tup velocities at impact in these photoelastic specimens.
Figures 5 and 6 show typical computed energy partitions in impacted Homalite~
100 and polycarbonate notch bend specimens. The small percentage of the fracture
energy in terms of the total input work at complete specimen fracture shows that the

total absorbed energy or the Charpy fracture energy cannot possibly be used to

characterize dynamic fracture of Homalite-100. Although the fracture energy oc-

cupies about 57 percent of the total absorved energy in the polycarbonate
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specimen, for the same reason, would not be an appropriate quantity for dynamic

characterization of polycarbonate.
IMPACTED NOTCH BEND STEEL AND ALUMINUM SPECIMENS
A dynamic finite element code was used to determine the increasing KIdyn

leading to KI at the onset of crack propagation in 25.4 mm thick A533B steel

d
at 118°C and at room temperature, and a 16 mm thick aluminum notch bend speci-
men [12]. The cracks in the two A533B steel specimens were fatigue-precracked
while a mechanically sharpened notch tip of 0.025 mm radius was used in the
aluminum specimen. These specimens were instrumented with a 3x3 mm strain gage
near the notch tip. The transient strain recorded during impact was then re-
lated to an equivalent static stress intensity factor following Loss's proce-
dure [16]. A second strain gage was also located at 1/4 span on the compres-
sion edge of the aluminum specimen. Extensive numerical analyses [12] verified
that the proximity of the strain gage and the use of instantaneous dynamic
strains appeared to compensate for lack of dynamic analysis in Loss's static
procedures for computing KIdyn. The loading rates, kIdyn’ and the tup veloci-~
ties at impact, V;y, in these tests are shown in Table 1.

Istat and I(Idy’l viriations in an impacted A533B

steel tested at -18°C and room temperature, respectively. With the exception

Figures 7 and 8 show the K

stat n

1

propagation in Figure 7, KIdyn shows no tendency to converge to KISt

at the initiation of crack

of the fortuitous coincidence of K and KIdy

at in these

figures. The time to fracture, tes is about 2t and 1.2t for the two AS533B

speciemns, but the lack of visible convergence of KIdyn to KIStat again indi-

stat

1 I
Figure 9 shows the KIStat and KIdyn variations in impacted 6061 aluminum

cates that K dyn will not converge to K even at the 3t period.

notch bend specimens with tf/T = 0.81. Again, the notable differences between

K dyn and K stat’ with no trend of abatement, are noted. KIStat computed from

I 1
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the 1/4-point strain gage signals, following the procedure described in Reference
[5], is not shown in Figure 9. The significant differences in the tup load trace
and 1/4-point gage signal, as shown in Figure 11 in Reference [12], would have

led to K stat

1 » which is appreciably different than the KIdyn in Figure 9. While

the energy partitions of the above three metallic specimens were not determined
due to lack of crack velocity measurements during fracture, experiences with
other dynamic fracture specimens such as single edged notch (SEN) specimens
subjected to uniform loading and fixed end displacement loading [18] show that
the total fracture energy dissipated in such specimens would be, at the best,
about half of the total input work of the specimen.
CONCLUSIONS AND DISCUSSIONS

Results of our previous experimental and numerical analyses of photoelastic
and metallic impacted notch bend specimens, when evaluated in terms of the
recommended guidelines for dynamic fracture toughness testing, show that these
procedures cannot be extended to the larger specimen configurations used in
this analysis.

The credible consistency in the experimental K_., in Reference [5] is based

1d

on internal correlations of the dynamic data evaluated statically, which may or

may not relate to the actual K The results of the photoelastic test data

1d*

show that this internal correlation of statically computed KId breaks down. On

the other hand, Figures 3 in References [10] and [11] and Figure 8 in Reference

[19] show that the dynamically evaluated K_, are remarkably the same among the

Id

four and six Homalite-100 and the seven polycarbonate impacted notch bend speci-
mens tested.

The above comparative study indicates that valid KI data could be generated

d

through impacted notch bend tests if appropriate dynamic analysis is used. The

authors feel that efforts should be expended in developing such a dynamic analysis




procedure rather than in developing restrictive conditions under which static :
analysis can be used. Conceivably, the long time delay necessary to validate

‘ static analysis could obviate the loading rate effect originally sought in

] these impact tests.
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